We will prove the title by using coend calculus, as hinted in Coend Calculus by Fosco Loregian.
For consistence letβs first formulate what to prove:
Theorem. For any (small) category
,
its presheaf category
is cartesien closed, i.e., for any presheaves
,
there exist a exponential object
whi is right adjoint to product:
proof: The exponential object
is defined as
.
The theorems/propositions in the comments after each equation are all
in the book Coend Calculus, and
is the standard yoneda embedding.
QED.
Source of TeX:
\begin{align}
\hat{\mathbf{C}}(P, \hat{\mathbf{C}}(\mathbf{y}_ {()} \times Q, R)) & \cong \int_c {\rm Set}(Pc, \hat{\mathbf{C}}(\mathbf{y}_c \times Q, R)) &(\text{By Thm 1.4.1}) \\
& \cong \int_c {\rm Set} (Pc, \int_x {\rm Set}(\mathbf{C}(x, c) \times Qx, Rx)) &(\text{By Thm 1.4.1}) \\
& \cong \int_c\int_x {\rm Set} (Pc, {\rm Set}(\mathbf{C}(x, c) \times Qx, Rx)) &(\text{Representables preserve limits}) \\
& \cong \int_x\int_c {\rm Set} (Pc, {\rm Set}(\mathbf{C}(x, c) \times Qx, Rx)) &(\text{By Thm 1.3.1}) \\
& \cong \int_x\int_c {\rm Set} (Pc \times \mathbf{C}(x, c), {\rm Set} (Qx, Rx)) &(\text{Set is cartesien closed}) \\
& \cong \int_x {\rm Set} (\int^c Pc \times \mathbf{C}(x, c), {\rm Set} (Qx, Rx)) &(\text{Representables turn colimts into limits}) \\
& \cong \int_x {\rm Set} (Px, {\rm Set} (Qx, Rx)) &(\text{By Prop 2.2.1}) \\
& \cong \int_x {\rm Set} (Px \times Qx, Rx) &(\text{Set is cartesien closed}) \\
& \cong \hat{\mathbf{C}}(P \times Q, R) &(\text{By Thm 1.4.1}) \\
\end{align}