The category of presheaves are cartesien closed
We will prove the title by using coend calculus, as hinted in Coend Calculus by Fosco Loregian.
For consistence let’s first formulate what to prove:
Theorem. For any (small) category , its presheaf category is cartesien closed, i.e., for any presheaves , there exist a exponential object whi is right adjoint to product:
proof: Denoting the standard yoneda embedding as , we now define exponential object is as .
The theorems/propositions in the comments after each equation are all in the book Coend Calculus, and
QED.
Source of TeX:
\begin{align}
\hat{\mathbf{C}}(P, \hat{\mathbf{C}}(\mathbf{y}_ {()} \times Q, R)) & \cong \int_c {\rm Set}(Pc, \hat{\mathbf{C}}(\mathbf{y}_c \times Q, R)) &(\text{By Thm 1.4.1}) \\
& \cong \int_c {\rm Set} (Pc, \int_x {\rm Set}(\mathbf{C}(x, c) \times Qx, Rx)) &(\text{By Thm 1.4.1}) \\
& \cong \int_c\int_x {\rm Set} (Pc, {\rm Set}(\mathbf{C}(x, c) \times Qx, Rx)) &(\text{Representables preserve limits}) \\
& \cong \int_x\int_c {\rm Set} (Pc, {\rm Set}(\mathbf{C}(x, c) \times Qx, Rx)) &(\text{By Thm 1.3.1}) \\
& \cong \int_x\int_c {\rm Set} (Pc \times \mathbf{C}(x, c), {\rm Set} (Qx, Rx)) &(\text{Set is cartesien closed}) \\
& \cong \int_x {\rm Set} (\int^c Pc \times \mathbf{C}(x, c), {\rm Set} (Qx, Rx)) &(\text{Representables turn colimts into limits}) \\
& \cong \int_x {\rm Set} (Px, {\rm Set} (Qx, Rx)) &(\text{By Prop 2.2.1}) \\
& \cong \int_x {\rm Set} (Px \times Qx, Rx) &(\text{Set is cartesien closed}) \\
& \cong \hat{\mathbf{C}}(P \times Q, R) &(\text{By Thm 1.4.1}) \\
\end{align}